Product Code Database
Example Keywords: apple -ipad $66
   » » Wiki: Kappa Curve
Tag Wiki 'Kappa Curve'.
Tag

In , the kappa curve or Gutschoven's curve is a two-dimensional resembling the . The kappa curve was first studied by Gérard van Gutschoven around 1662. In the history of mathematics, it is remembered as one of the first examples of 's application of rudimentary calculus methods to determine the of a curve. and continued the studies of this curve subsequently.


Formulation
Using the Cartesian coordinate system it can be expressed as
x^2\left(x^2 + y^2\right) = a^2y^2
or, using parametric equations,
\begin{align}
x &= a\sin t,\\ y &= a\sin t\tan t. \end{align}

In polar coordinates its equation is even simpler:

r = a\tan\theta.

It has two vertical at , shown as dashed blue lines in the figure at right.

The kappa curve's :

\kappa(\theta) = \frac{8\left(3 - \sin^2\theta\right)\sin^4\theta}{a \left(\sin^2(2\theta) + 4\right)^\frac32}.

angle:

\phi(\theta) = -\arctan\left(\tfrac12 \sin(2\theta)\right).


Tangents via infinitesimals
The tangent lines of the kappa curve can also be determined geometrically using differentials and the elementary rules of arithmetic. Suppose and are variables, while a is taken to be a constant. From the definition of the kappa curve,
x^2\left(x^2 + y^2\right)-a^2y^2 = 0

Now, an infinitesimal change in our location must also change the value of the left hand side, so

d \left(x^2\left(x^2 + y^2\right)-a^2y^2\right) = 0

Distributing the differential and applying appropriate rules,

\begin{align}
d \left(x^2\left(x^2 + y^2\right)\right)-d \left(a^2y^2\right) &= 0 \\6px (2 x\,dx ) \left(x^2+y^2\right) + x^2 (2x\,dx + 2y\,dy) - a^2 2y\,dy &= 0 \\6px \left( 4 x^3 + 2 x y^2\right) dx + \left( 2 y x^2 - 2 a^2 y \right) dy &= 0 \\6px x \left( 2 x^2 + y^2 \right) dx + y \left(x^2 - a^2\right) dy &= 0 \\6px \frac{ x \left( 2 x^2 + y^2 \right) }{ y \left(a^2 - x^2\right)} &= \frac{dy}{dx} \end{align}


Derivative
If we use the modern concept of a functional relationship and apply implicit differentiation, the slope of a tangent line to the kappa curve at a point is:

\begin{align}
2 x \left( x^2 + y^2 \right) + x^2 \left( 2x + 2 y \frac{dy}{dx} \right) &= 2 a^2 y \frac{dy}{dx} \\6px 2 x^3 + 2 x y^2 + 2 x^3 &= 2 a^2 y \frac{dy}{dx} - 2 x^2 y \frac{dy}{dx} \\6px 4 x^3 + 2 x y^2 &= \left(2 a^2 y - 2 x^2 y \right) \frac{dy}{dx} \\6px \frac{2 x^3 + x y^2}{a^2 y - x^2 y} &= \frac{dy}{dx} \end{align}


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time